财新传媒 财新传媒

阅读:0
听报道

编译:蒋宝尚

在机器学习中,寻找数据集也是非常重要的一步。质量高或者相关性高的数据集对模型的训练是非常有帮助的。

 

那么用于机器学习的开放数据集有哪些呢?文摘菌给大家推荐一份高质量的数据集,这些数据集或者涵盖范围广泛(比如 Kaggle),或者非常细化(比如自动驾驶汽车的数据)。

 

首先,在搜索数据集时,在卡内基·梅隆大学有以下说法:

  • 数据集不应混乱,因为你不希望花费大量时间清理数据。

  • 数据集不应该有太多行或列,因此很容易使用。

  • 数据越干净越好 —— 清洗大型数据集相当耗时。

  • 数据可以解答一些有趣的问题。

 

 

数据集查找器

 

Kaggle:Kaggle是由联合创始人、首席执行官安东尼·高德布卢姆(Anthony Goldbloom)2010年在墨尔本创立的,主要为开发商和数据科学家提供举办机器学习竞赛、托管数据库、编写和分享代码的平台。该平台已经吸引了80万名数据科学家的关注。

 

在这个平台中可以找到各种数据,从拉面的评分、篮球数据,到西雅图的宠物牌照应有尽有。

 

UCI机器学习库(UCI Machine Learning Repository):这是网络上最早的数据集来源之一,是寻找各种有趣数据集的第一选择。虽然用户提供的数据集的清洁度不太一样,但绝大多数都是干净的。我们可以从 UCI 机器学习库直接下载数据,无需注册。

 

VisualData:在这里计算机视觉数据集按类别分组,并且支持搜索查询。

 

公共政府数据集

 

在这里可以下载到多个美国政府机构的数据。从政府预算到学校成绩。但要注意的是,很多数据还有待进一步研究。

 

食品环境地图集(Food Environment Atlas):当地的食物选择如何影响美国饮食的数据。

 

学校系统财务状况(School system finances):这里有美国学校系统财务状况的调查。

 

慢性病数据(Chronic disease data):美国各地慢性病指标的数据。

 

美国国家教育统计中心(The US National Center for Education Statistics):来自美国和世界各地的教育机构和教育人口统计数据。

 

英国数据服务:英国最大的社会、经济和人口数据收集机构。

 

数据美国(Data USA):全面的、可视化的美国公共数据。

 

金融和经济

 

Quandl: 里面有很多经济和金融数据,你可以使用这些数据建立预测经济指标或股价的模型。

 

世界银行开放数据(World Bank Open Data):涵盖世界各地人口统计、大量经济和发展指标的数据集。

 

货币基金组织的数据(IMF Data):国际货币基金组织公布关于国际金融、债务率、外汇储备、商品价格和投资的数据。

 

英国金融时报金融时报市场数据(Financial Times Market Data:):里面有来自世界各地的最新金融市场信息,包括股票价格指数、商品和外汇。

 

谷歌趋势(Google Trends):观察和分析有关互联网搜索活动和世界各地新闻故事趋势的数据。

 

美国经济协会(AEA):这这里你可以找到美国宏观经济的相关数据。

 

 

机器学习数据集

 

Labelme:数据集中包含大量有标注的图像数据。

 

ImageNet: 是一个用于视觉对象识别软件研究的大型可视化数据库。超过1400万的图像URL被ImageNet手动注释。根据 WordNet 层次结构来组织,其中层次结构的每个节点都由成百上千个图像来描述。

http://image-

 

LSUN:场景理解与许多辅助任务(房间布局估计,显着性预测等)

 

MS COCO:通用图像的理解和文字描述。

 

COIL 100:在 360 度旋转中以各个角度成像的 100 个不同的物体。

 

视觉基因组:非常详细的视觉知识库,配以0 万张带有文字描述的图像。

 

谷歌的Open Images:“知识共享”(Creative Commons)下的900万个图像网址集合,已标注超过6,000个类别的标签。

 

Labelled Faces in the Wild:13,000个人脸标记图像,用于开发涉及面部识别的应用程序。

http://vis-

 

Stanford Dogs Dataset:包含20580张图片和120个不同的狗品种类别。

 

室内场景识别(Indoor Scene Recognition):这是一个非常细化的数据集,由于大多数在“户外”场景中表现良好的场景识别模型在室内表现不佳,因而这个数据集非常有用。内有 67 个室内类别,共 15,620 张图像。

 

情感分析

 

多域情感分析数据集(Multidomain sentiment analysis dataset):一个比较有历史的数据集,里面还有一些来自亚马逊的产品评论。

~mdredze/datasets/sentiment/

 

IMDB: 影评,也是比较有历史的二元情绪分类数据集、数据规模相对较小,里面有 25,000 条电影评论。

~amaas/data/sentiment/

 

斯坦福情感树银行(Stanford Sentiment Treebank):带有情感注释的标准情绪数据集。

 

Sentiment140:一个流行的数据集,它使用16万条推文,并把表情等等符号剔除了。

 

Twitter 美国航空公司情绪数据集 (Twitter US Airline Sentiment):自 2015 年 2 月以来美国航空公司的 Twitter 数据,分类为正面、负面和中性推文。

 

自然语言处理

 

安然数据集:里面有安然集团高级管理层的电子邮件数据。

~./enron/

 

亚马逊评论:里面有3500万条来自亚马逊的评论,时间长度为18年。数据包括产品和用户信息、评级等。

 

Google Books Ngram:来自Google书籍的词汇集合。

 

博客语料库:从收集的681,288篇博客文章。每个博客至少包含200个常用的英语单词。

~koppel/BlogCorpus.htm

 

维基百科链接数据(Wikipedia Links data):维基百科全文。该数据集包含来自400多万篇文章,近19亿字。你可以对字、短语或段落本身的一部分进行搜索。

 

Gutenberg电子图书列表:Project Gutenberg的附加注释的电子书列表。

:Offline_Catalogs

 

加拿大议会的文本块(Hansards text chunks of Canadian Parliament):来自第36届加拿大议会记录的130万对文本。

http://

 

危险边缘 (Jeopardy):来自问答游戏节目《危险边缘》(Jeopardy) 的超过 20 万个问题的存档。

 

英文SMS垃圾邮件收集(SMS Spam Collection in English):包含5,574条英文垃圾邮件的数据集。

~tiago/smsspamcollection/

 

Yelp评论(Yelp Reviews):Yelp发布的一个开放数据集,包含超过500万次评论。

 

UCI的垃圾邮件库(UCI’s Spambase):一个大型垃圾邮件数据集,用于垃圾邮件过滤。

 

自动驾驶

 

Berkeley DeepDrive BDD100k:这是目前最大的自动驾驶 数据集。里面有超过 1,100 多个小时驾驶体验的视频,包含10 万个在一天中不同时段以及在不同天气条件下的数据。

http://bdd-

 

百度 Apolloscapes:大型数据集,定义了26种不同的语义项,如汽车,自行车,行人,建筑物,路灯等。

 

超过7个小时的高速公路驾驶视频。里面的数据包括汽车的速度、加速度、转向角和GPS坐标。

 

城市景观数据集:记录50个不同城市的城市街道场景的大型数据集。

https://www.cityscapes-

 

CSSAD数据集:包含自动车辆的感知和导航等数据,但着重于发达国家的道路。

 

麻省理工学院AGE实验室(MIT AGE Lab:):在AgeLab收集的1,000多小时多传感器驾驶数据集的样本。

 

LISA:智能和安全汽车实验室,加州大学圣地亚哥分校数据集:该数据集包括交通标志,车辆检测,交通信号灯和轨迹模式。

 

博世小型交通灯数据集(Bosch Small Traffic Light Dataset):用于深入学习的小交通灯数据集。

https://hci.iwr.uni-

 

Lara交通灯识别(LaRa Traffic Light Recognition):巴黎交通灯的数据集。

 

WPI 数据集:交通灯、行人和车道检测的数据集。

 

相关报道:

话题:



0

推荐

大数据文摘

大数据文摘

448篇文章 3年前更新

普及数据思维,传播数据文化

文章